Modulation of Fas–Fas ligand interaction rehabilitates hypoxia-induced apoptosis of mesenchymal stem cells in ischemic myocardium niche

Onju Ham, Se Yeon Lee, Byeong Wook Song, Min Ji Cha, Chang Youn Lee, Jun Hee Park, Il Kwon Kim, Jiyun Lee, Hyang Hee Seo, Min Ji Seung, Eunhyun Choi, Yangsoo Jang, Ki Chul Hwang

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Mesenchymal stem cells (MSCs) have the potential to repair and regenerate ischemic heart tissue; however, the poor viability of transplanted MSCs in the ischemic region is a major obstacle to their therapeutic use. This cell death is caused by Fas and Fas ligand (FasL) interactions under harsh conditions. To investigate improving the survival and therapeutic effects of MSCs, we focused our research on Fas–FasL-mediated cell death. In this study, we found that the poor viability of transplanted MSCs was caused by Fas–FasL interactions between host ischemic myocardial cells and implanted MSCs. In addition, we found that increased Fas expression and the corresponding decrease of cell survival were in close relation to hypoxic MSCs treated with FasL and H2O2. When MSCs were treated with a recombinant Fas/Fc chimera (Fas/Fc) inhibiting Fas–FasL interactions, the expressions of proapoptotic proteins including caspase-8, caspase-3, Bax, and cytochrome-c were attenuated, and the survival of MSCs was recovered. In ischemia–reperfusion injury models, the interaction between FasL in ischemic heart and Fas in implanted MSCs caused a loss of transplanted MSCs, whereas the inhibition of this interaction by Fas/Fc treatment improved cell survival and restored heart function. Thus, our study suggests that Fas–FasL interactions are responsible for activating cell death signaling in implanted stem cells and could be a potential target for improving therapeutic efficacy of stem cells in treating ischemic heart diseases.

Original languageEnglish
Pages (from-to)1329-1341
Number of pages13
JournalCell transplantation
Volume24
Issue number7
DOIs
Publication statusPublished - 2015 Jul 15

Bibliographical note

Publisher Copyright:
© 2015 Cognizant Comm. Corp.

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering
  • Cell Biology
  • Transplantation

Fingerprint

Dive into the research topics of 'Modulation of Fas–Fas ligand interaction rehabilitates hypoxia-induced apoptosis of mesenchymal stem cells in ischemic myocardium niche'. Together they form a unique fingerprint.

Cite this