Abstract
Using a simple theoretical model, we calculate three-dimensional profiles of photoresist exposed by arbitrarily shaped localized fields of high-transmission metal nano-apertures. We apply the finite difference time domain (FDTD) method to obtain the localized field distributions, which are generated by excitation of localized surface plasmon polaritons underneath a C-shaped or a bow-tie-shaped aperture. Incorporating the results of FDTD simulations with the theoretical model, we visualize three-dimensional exposure profiles of the photoresist as a function of the exposure dose and the gap distance between the aperture and the photoresist. It is found that the three-dimensional exposure profiles provide useful information for choosing process parameters for nanopatterning by plasmonic lithography using the aperture.
Original language | English |
---|---|
Article number | 275303 |
Journal | Nanotechnology |
Volume | 19 |
Issue number | 27 |
DOIs | |
Publication status | Published - 2008 Jul 9 |
All Science Journal Classification (ASJC) codes
- Bioengineering
- Chemistry(all)
- Materials Science(all)
- Mechanics of Materials
- Mechanical Engineering
- Electrical and Electronic Engineering