Abstract
Solar cells are semiconductor devices that generate electricity through charge generation upon illumination. For optimal device efficiency, the photogenerated carriers must reach the electrical contact layers before they recombine. A deep understanding of the recombination process and transport behavior is essential to design better devices. Halide perovskite solar cells are commonly made of a polycrystalline absorber layer, but there is no consensus on the nature and role of grain boundaries. This review concerns theoretical approaches for the investigation of extended defects. We introduce recent computational studies on grain boundaries, and their influence on point-defect distributions, in halide perovskite solar cells. We conclude with a discussion of future research directions.
Original language | English |
---|---|
Pages (from-to) | 95-109 |
Number of pages | 15 |
Journal | Annual Review of Condensed Matter Physics |
Volume | 12 |
DOIs | |
Publication status | Published - 2021 Mar 10 |
Bibliographical note
Publisher Copyright:© 2021 by Annual Reviews. All rights reserved.
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Condensed Matter Physics