Abstract
Micro/nanorobots, deployed to programmable missions, are at the forefront of next-generation machinery and robotics. Here, we present magnetically actuated 2D-microrobot photocatalysts with enhanced photocatalysis due to enhanced mass transfer by photocatalytic on-the-fly microrobot action. The magnetic 2D-microrobots, consisting of layered manganese thiophosphates (MnPS3) and Fe3O4 nanochains, are fabricated by electrostatic assembly, which provides versatile and efficient 1D/2D hetero-dimensional nanoarchitectonic hybridization. The resulting MnPS3-Fe3O4 microrobots are actively propelled by vertical tumbling under a transversal rotating external magnetic field. Particularly, a programmed swarming mode enables local fluid convection and self-stirring, which enhances the photochemical reaction. The promise of swarming 2D-microrobots was shown for enhanced photodegradation of an organic pollutant (Rhodamine B, Rh-B) and the nerve agent chlorpyrifos (CPS); here, MnPS3-Fe3O4 microrobots act like moving 2D photocatalysts, with enhanced degradation efficiency of 10.3% (Rh-B) and 8.8% (CPS) compared to that of static hybrids. The moving 2D photocatalyst and hetero-dimensional nanoarchitectonic methodology demonstrated here can potentially inspire a variety of high-performance magnetic 2D-micro/nanorobots for catalytic applications.
Original language | English |
---|---|
Article number | 137342 |
Journal | Chemical Engineering Journal |
Volume | 446 |
DOIs | |
Publication status | Published - 2022 Oct 15 |
Bibliographical note
Publisher Copyright:© 2022 Elsevier B.V.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Environmental Chemistry
- Chemical Engineering(all)
- Industrial and Manufacturing Engineering