Abstract
We demonstrated the solution-processed single-walled carbon nanotube (SWNT) source-drain electrodes patterned using a plasma-enhanced detachment patterning method for high-performance organic transistors and inverters. The high-resolution SWNT electrode patterning began with the formation of highly uniform SWNT thin films on a hydrophobic silanized substrate. The SWNT source-drain patterns were then formed by modulating the interfacial energies of the prepatterned elastomeric mold and the SWNT thin film using oxygen plasma. The SWNT films were subsequently selectively delaminated using a rubber mold. The patterned SWNTs could be used as the source-drain electrodes for both n-type PTCDI-C8 and p-type pentacene field-effect transistors (FETs). The n- and p-type devices exhibited good and exactly matched electrical performances, with a field-effect mobility of around 0.15 cm2 V-1 s -1 and an ON/OFF current ratio exceeding 106. The single electrode material was used for both the n and p channels, permitting the successful fabrication of a high-performance complementary inverter by connecting a p-type pentacene FET to an n-type PTCDI-C8 FET. This patterning technique was simple, inexpensive, and easily scaled for the preparation of large-area electrode micropatterns for flexible microelectronic device fabrication.
Original language | English |
---|---|
Pages (from-to) | 9664-9670 |
Number of pages | 7 |
Journal | ACS Applied Materials and Interfaces |
Volume | 6 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2014 Jun 25 |
All Science Journal Classification (ASJC) codes
- Materials Science(all)