Microfluidic bioassay system based on microarrays of hydrogel sensing elements entrapping quantum dot-enzyme conjugates

Eunji Jang, Sinyoung Kim, Won Gun Koh

Research output: Contribution to journalArticlepeer-review

55 Citations (Scopus)


This paper presents a simple method to fabricate a microfluidic biosensor that is able to detect substrates for H 2O 2-generating oxidase. The biosensor consists of three components (quantum dot-enzyme conjugates, hydrogel microstructures, and a set of microchannels) that were hierarchically integrated into a microfluidic device. The quantum dot (QD)-enzyme conjugates were entrapped within the poly(ethylene glycol) (PEG)-based hydrogel microstructures that were fabricated within the microchannels by a photopatterning process. Glucose oxidase (GOX) and alcohol oxidase (AOX) were chosen as the model oxidase enzymes, conjugated to carboxyl-terminated CdSe/ZnS QDs, and entrapped within the hydrogel microstructures, which resulted in a fluorescent hydrogel microarray that was responsive to glucose or alcohol. The hydrogel-entrapped GOX and AOX were able to perform enzyme-catalyzed oxidation of glucose and alcohol, respectively, to produce H 2O 2, which subsequently quenched the fluorescence of the conjugated QDs. The fluorescence intensity of the hydrogel microstructures decreased as the glucose and alcohol concentrations increased, and the detection limits of this system were found to be 50μM of glucose and 70μM of alcohol. Because each microchannel was able to carry out different assays independently, the simultaneous detection of glucose and alcohol was possible using our novel microfluidic device composed of multiple microchannels.

Original languageEnglish
Pages (from-to)529-536
Number of pages8
JournalBiosensors and Bioelectronics
Issue number1
Publication statusPublished - 2012 Jan 15

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) (2010K001430 “Converging Research Center Program”, and R11-2007-050-03002-0 “Active Polymer Center for Pattern Integration at Yonsei University”).

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Biophysics
  • Biomedical Engineering
  • Electrochemistry


Dive into the research topics of 'Microfluidic bioassay system based on microarrays of hydrogel sensing elements entrapping quantum dot-enzyme conjugates'. Together they form a unique fingerprint.

Cite this