Microchannel system for rate-controlled, sequential, and pH-responsive drug delivery

Dasom Yang, Jung Seung Lee, Chang Kuk Choi, Hong Pyo Lee, Seung Woo Cho, Won Hyoung Ryu

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


Controlled delivery of drug at a constant rate, in a sequential order, or responsive to environment conditions has been pursued for a long time to enhance the efficacy of therapeutic molecules and to minimize side effects of highly potent drugs. However, achieving such delicately-controlled delivery of a drug molecule is non-trivial and still remains a challenge. We propose the use of microchannels to control the rate, sequence, and pH-responsiveness of drug delivery for high precision and predictability. In this study, we introduce elementary drug delivery units consisting of micro-reservoirs and microchannels that have variations in their lengths, widths, numbers, and straightness. The release study demonstrates that the release rates of model drugs can be modulated by the design of microchannels. Finite element modeling of drug release predicts the performance of the drug delivery units with high accuracy. The possibility of sequential drug delivery is also demonstrated using biodegradable polymer plug in microchannels. Finally, pH-responsive delivery of drugs in microfluidic units is also discussed and demonstrated via cell viability tests. Statement of Significance: In this work, we developed microchannel-based drug delivery devices whose release rate could be accurately calculated and controlled by design of microchannel geometry. Although there have been many advances in microfabricated drug delivery systems, in particular, reservoir-based systems, no systematic investigation has been made to utilize the release channels. In our work, an equivalent electrical circuit concept was applied to the microfluidic systems for more detailed design and analysis. A microfluidic channel was regarded as an electrical resistor; their diffusion/electrical flux could be tuned with geometric factors such as length, width, a number of channel/resistor and their connections. Furthermore, from delivery rate control using channel geometry, multifunctional channel-based release systems for sequential and pH-responsive were demonstrated.

Original languageEnglish
Pages (from-to)249-260
Number of pages12
JournalActa Biomaterialia
Publication statusPublished - 2018 Mar 1

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668).

Publisher Copyright:
© 2017 Acta Materialia Inc.

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Biomaterials
  • Biochemistry
  • Biomedical Engineering
  • Molecular Biology


Dive into the research topics of 'Microchannel system for rate-controlled, sequential, and pH-responsive drug delivery'. Together they form a unique fingerprint.

Cite this