Abstract
A facile process to produce large-area platinum (Pt) counter electrode platforms with well-arrayed, mesh-shaped nanopatterns using commercially available TiO2 paste and poly(dimethyl siloxane) (PDMS) nanostamps is presented. The process involves mesh-shaped (200 nm x 200 nm) nanopatterning of a TiO2 scaffold onto a fluorine-doped tin oxide (FTO) substrate, followed by Pt sputtering. The structure and morphology of the counter electrodes are characterized by a field emission scanning electron microscope (FE-SEM) and an atomic force microscope (AFM). Solid-state dye-sensitized solar cells (ssDSSCs) fabricated with these mesh-shaped Pt counter electrodes showed an efficiency of 7.0%. This is one of the highest efficiencies observed for N719 dye and is much higher than that of devices with non-patterned, thermally deposited electrodes (5.4%) or non-patterned, sputtering deposited electrodes (5.7%). This improvement is attributed to enhanced light harvesting and a greater surface area and has been confirmed by incident photon-to current efficiency (IPCE), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) measurements.
Original language | English |
---|---|
Article number | 1400414 |
Journal | Advanced Energy Materials |
Volume | 4 |
Issue number | 18 |
DOIs | |
Publication status | Published - 2014 Dec 1 |
Bibliographical note
Publisher Copyright:© 2014 Wiley-VCH Verlag GmbH & Co. KGaA.
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Materials Science(all)