TY - GEN
T1 - Memory efficient subspace clustering for online data streams
AU - Park, Nam Hun
AU - Lee, Won Suk
PY - 2008
Y1 - 2008
N2 - Subspace clustering over an online multi-dimensional data stream requires to examine all the subsets of its dimensions, so that a huge amount of memory space may be required. To trace the ongoing changes of cluster patterns over an online data stream by a confined memory space, this paper proposes a grid-based subspace clustering algorithm that can utilize the confined memory space effectively. Given an n-dimensional data stream, the on-going distribution statistics of data elements in each one-dimension data space are firstly monitored by a list of grid-cells called a sibling list. Once a grid-cell of a first-level sibling list becomes a dense unit grid-cell, new second-level sibling lists are created as its child nodes in order to trace any cluster in all possible two-dimensional rectangular subspaces. In such a way, a sibling tree grows up to the nth level at most and a k-dimensional subcluster can be found at the kth level of the sibling tree. To utilize the confined space of main memory effectively, only the upper-part of a sibling tree is expanded at all times and the subtrees in the lower part are expanded in turns by various scheduling policies such as round-robin and priority-based. Furthermore, in order to confine the usage of memory space, the size of a unit grid-cell is adaptively minimized such that the result of clustering becomes as accurate as possible at all times. The performance of the proposed method is comparatively analyzed by a number of experiments to identify its various characteristics.
AB - Subspace clustering over an online multi-dimensional data stream requires to examine all the subsets of its dimensions, so that a huge amount of memory space may be required. To trace the ongoing changes of cluster patterns over an online data stream by a confined memory space, this paper proposes a grid-based subspace clustering algorithm that can utilize the confined memory space effectively. Given an n-dimensional data stream, the on-going distribution statistics of data elements in each one-dimension data space are firstly monitored by a list of grid-cells called a sibling list. Once a grid-cell of a first-level sibling list becomes a dense unit grid-cell, new second-level sibling lists are created as its child nodes in order to trace any cluster in all possible two-dimensional rectangular subspaces. In such a way, a sibling tree grows up to the nth level at most and a k-dimensional subcluster can be found at the kth level of the sibling tree. To utilize the confined space of main memory effectively, only the upper-part of a sibling tree is expanded at all times and the subtrees in the lower part are expanded in turns by various scheduling policies such as round-robin and priority-based. Furthermore, in order to confine the usage of memory space, the size of a unit grid-cell is adaptively minimized such that the result of clustering becomes as accurate as possible at all times. The performance of the proposed method is comparatively analyzed by a number of experiments to identify its various characteristics.
UR - http://www.scopus.com/inward/record.url?scp=77954443477&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77954443477&partnerID=8YFLogxK
U2 - 10.1145/1451940.1451968
DO - 10.1145/1451940.1451968
M3 - Conference contribution
AN - SCOPUS:77954443477
SN - 9781605581880
T3 - ACM International Conference Proceeding Series
SP - 199
EP - 208
BT - Proceedings of IDEAS'08
T2 - International Database Engineering and Applications Symposium, IDEAS'08
Y2 - 10 September 2008 through 12 September 2008
ER -