Measurement of the production cross section ratio σ(χb2(1P))/σ(χb1(1P)) in pp collisions at s=8TeV

The CMS Collaboration

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)

Abstract

A measurement of the production cross section ratio σ(χb2(1P))/σ(χb1(1P)) is presented. The χb1(1P) and χb2(1P) bottomonium states, promptly produced in pp collisions at s=8TeV, are detected by the CMS experiment at the CERN LHC through their radiative decays χb1,2(1P)→ϒ(1S)+γ. The emitted photons are measured through their conversion to e+e- pairs, whose reconstruction allows the two states to be resolved. The ϒ(1S) is measured through its decay to two muons. An event sample corresponding to an integrated luminosity of 20.7fb-1 is used to measure the cross section ratio in a phase-space region defined by the photon pseudorapidity, |ηγ|<1.0; the ϒ(1S) rapidity, |yϒ|<1.5; and the ϒ(1S) transverse momentum, 7<pTϒ<40GeV. The cross section ratio shows no significant dependence on the ϒ(1S) transverse momentum, with a measured average value of 0.85±0.07(stat+syst)±0.08(BF), where the first uncertainty is the combination of the experimental statistical and systematic uncertainties and the second is from the uncertainty in the ratio of the χb branching fractions.

Original languageEnglish
Pages (from-to)383-402
Number of pages20
JournalPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
Volume743
DOIs
Publication statusPublished - 2015

Bibliographical note

Funding Information:
We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq , CAPES , FAPERJ , and FAPESP (Brazil); MES (Bulgaria); CERN ; CAS , MoST , and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER , ERC IUT and ERDF (Estonia); Academy of Finland , MEC , and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF , DFG , and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV , CONACYT , SEP , and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON , RosAtom , RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter , IPST , STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Funding Information:
Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation ; the A.P. Sloan Foundation ; the Alexander von Humboldt Foundation ; the Belgian Federal Science Policy Office ; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture ( FRIA -Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports ( MEYS ) of the Czech Republic; the Council of Science and Industrial Research , India; the HOMING PLUS programme of Foundation For Polish Science , cofinanced from European Union, Regional Development Fund ; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF ; and the National Priorities Research Program by Qatar National Research Fund .

Publisher Copyright:
© 2015 CERN for the benefit of the CMS Collaboration.

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Measurement of the production cross section ratio σ(χb2(1P))/σ(χb1(1P)) in pp collisions at s=8TeV'. Together they form a unique fingerprint.

Cite this