TY - JOUR
T1 - Mantle-Derived Helium Emission near the Pohang EGS Site, South Korea
T2 - Implications for Active Fault Distribution
AU - Kim, Heejun
AU - Lee, Hyunwoo
AU - Lee, Jaemin
AU - Lee, Hyun A.
AU - Woo, Nam Chil
AU - Lee, Youn Soo
AU - Kagoshima, Takanori
AU - Takahata, Naoto
AU - Sano, Yuji
N1 - Publisher Copyright:
© 2020 Heejun Kim et al.
PY - 2020
Y1 - 2020
N2 - An Mw 5.5 earthquake occurred in Pohang, South Korea on November 15, 2017, resulting in a great impact on society. Despite a lot of controversy about the cause of the earthquake in relation to the enhanced geothermal system (EGS), the location of earthquake-related active faults is poorly known. Here, we first report the results of the geochemical and isotopic analyses of dissolved gases in groundwater in the Heunghae, Yeonil, and Sinkwang areas. According to the N2-Ar-He relationship, samples from the Heunghae and Yeonil areas are contributed to the mantle, except for the Sinkwang area, where all samples are atmospheric. The Pohang samples consist mainly of N2 and CO2, and some samples of the Heunghae and Yeonil areas contain substantial CH4. Stable isotope compositions of N2 (δ15N=0.2 to 3.6‰), CO2 (δ13C=-27.3 to-16.0‰), and CH4 (δ13C=-76.1 to-70.0‰) indicate that these components are derived from organic substances in sedimentary layer of Pohang Basin. On the other hand, helium isotope ratios (3He/4He, up to 3.83 Ra) represent the significant mantle contribution in the Heunghae and Yeonil areas. Through the distribution of high 3He/4He ratios, we propose that the Heunghae, Namsong, and Jamyeong faults are the passage of mantle-derived fluids. Computed 3He fluxes of the Heunghae (120 to 3,000 atoms cm-2 sec-1), Namsong (52 to 1,300 atoms cm-2 sec-1), and Jamyeong (83 to 2,100 atoms cm-2 sec-1) faults are comparable to other major active faults around the world, reflecting either high porosity or high helium flow rates. Therefore, our results demonstrate that there are active faults near the EGS facilities, which can provide the basis for future studies.
AB - An Mw 5.5 earthquake occurred in Pohang, South Korea on November 15, 2017, resulting in a great impact on society. Despite a lot of controversy about the cause of the earthquake in relation to the enhanced geothermal system (EGS), the location of earthquake-related active faults is poorly known. Here, we first report the results of the geochemical and isotopic analyses of dissolved gases in groundwater in the Heunghae, Yeonil, and Sinkwang areas. According to the N2-Ar-He relationship, samples from the Heunghae and Yeonil areas are contributed to the mantle, except for the Sinkwang area, where all samples are atmospheric. The Pohang samples consist mainly of N2 and CO2, and some samples of the Heunghae and Yeonil areas contain substantial CH4. Stable isotope compositions of N2 (δ15N=0.2 to 3.6‰), CO2 (δ13C=-27.3 to-16.0‰), and CH4 (δ13C=-76.1 to-70.0‰) indicate that these components are derived from organic substances in sedimentary layer of Pohang Basin. On the other hand, helium isotope ratios (3He/4He, up to 3.83 Ra) represent the significant mantle contribution in the Heunghae and Yeonil areas. Through the distribution of high 3He/4He ratios, we propose that the Heunghae, Namsong, and Jamyeong faults are the passage of mantle-derived fluids. Computed 3He fluxes of the Heunghae (120 to 3,000 atoms cm-2 sec-1), Namsong (52 to 1,300 atoms cm-2 sec-1), and Jamyeong (83 to 2,100 atoms cm-2 sec-1) faults are comparable to other major active faults around the world, reflecting either high porosity or high helium flow rates. Therefore, our results demonstrate that there are active faults near the EGS facilities, which can provide the basis for future studies.
UR - http://www.scopus.com/inward/record.url?scp=85089306841&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85089306841&partnerID=8YFLogxK
U2 - 10.1155/2020/2359740
DO - 10.1155/2020/2359740
M3 - Article
AN - SCOPUS:85089306841
SN - 1468-8115
VL - 2020
JO - Geofluids
JF - Geofluids
M1 - 2359740
ER -