MaDeNet: Disentangling Individuality of EEG Signals through Feature Space Mapping and Detachment

Seong Eun Moon, Jong Seok Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

The cross-subject variability, or individuality, of electroencephalography (EEG) signals often has been an obstacle to extracting target-related information from EEG signals for classification of subjects' perceptual states. In this paper, we propose a deep learning-based EEG classification approach, which learns feature space mapping and performs individuality detachment to reduce subject-related information from EEG signals and maximize classification performance. Our experiment on EEG-based video classification shows that our method significantly improves the classification accuracy.

Original languageEnglish
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages260-263
Number of pages4
ISBN (Electronic)9781728119908
DOIs
Publication statusPublished - 2020 Jul
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: 2020 Jul 202020 Jul 24

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period20/7/2020/7/24

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'MaDeNet: Disentangling Individuality of EEG Signals through Feature Space Mapping and Detachment'. Together they form a unique fingerprint.

Cite this