TY - JOUR
T1 - Lubricating adhesive hyaluronate patch promotes cartilage regeneration and functional restoration in osteoarthritis
AU - Choi, Soojeong
AU - Jeon, Eun Je
AU - Bae, Yunsu
AU - Jeon, Jihoon
AU - Kang, Donyoung
AU - Lee, Hyungsuk
AU - Cho, Seung Woo
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/8
Y1 - 2024/8
N2 - Osteoarthritis (OA) is a common chronic degenerative joint disease characterized by gradual deterioration and pain. Viscosupplementation, involving hyaluronic acid (HA) injection into the affected joint, is a minimally invasive option to reduce pain by improving joint lubrication and potentially avoiding the need for replacement surgery. However, the low adhesion and rapid degradation of HA often lead to inadequate therapeutic effects. In this study, we present lubricating adhesive HA-based hydrogel patches designed to effectively treat OA. The HA patches, modified with pyrogallol, have high elastic and compressive moduli, delaying degradation when exposed to external stimuli. Furthermore, they securely adhere to cartilage tissue surfaces and efficiently lubricate damaged cartilage, leading to a reduced friction and wear. In addition to these benefits, our HA patches exhibit scavenging effect of reactive oxygen species and sustainably release an encapsulated anti-inflammatory drug (dexamethasone: Dex). These features further enhance their therapeutic potential for OA treatment. In a mouse OA model, the hydrogel patches loaded with Dex promote healing of damaged cartilage and restore its motor function. Overall, our bioinspired HA hydrogel patches present a promising treatment option for managing the debilitating joint disease by offering enhanced adhesion, lubrication for cartilage protection, antioxidant effect, and sustained drug release.
AB - Osteoarthritis (OA) is a common chronic degenerative joint disease characterized by gradual deterioration and pain. Viscosupplementation, involving hyaluronic acid (HA) injection into the affected joint, is a minimally invasive option to reduce pain by improving joint lubrication and potentially avoiding the need for replacement surgery. However, the low adhesion and rapid degradation of HA often lead to inadequate therapeutic effects. In this study, we present lubricating adhesive HA-based hydrogel patches designed to effectively treat OA. The HA patches, modified with pyrogallol, have high elastic and compressive moduli, delaying degradation when exposed to external stimuli. Furthermore, they securely adhere to cartilage tissue surfaces and efficiently lubricate damaged cartilage, leading to a reduced friction and wear. In addition to these benefits, our HA patches exhibit scavenging effect of reactive oxygen species and sustainably release an encapsulated anti-inflammatory drug (dexamethasone: Dex). These features further enhance their therapeutic potential for OA treatment. In a mouse OA model, the hydrogel patches loaded with Dex promote healing of damaged cartilage and restore its motor function. Overall, our bioinspired HA hydrogel patches present a promising treatment option for managing the debilitating joint disease by offering enhanced adhesion, lubrication for cartilage protection, antioxidant effect, and sustained drug release.
KW - Adhesive phenolic hyaluronic acid
KW - Lubricating hydrogel patch
KW - Osteoarthritis
KW - ROS scavenging
KW - Sustained drug delivery
UR - http://www.scopus.com/inward/record.url?scp=85198283407&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85198283407&partnerID=8YFLogxK
U2 - 10.1016/j.apmt.2024.102318
DO - 10.1016/j.apmt.2024.102318
M3 - Article
AN - SCOPUS:85198283407
SN - 2352-9407
VL - 39
JO - Applied Materials Today
JF - Applied Materials Today
M1 - 102318
ER -