Lipidomic analysis of skeletal muscle tissues of p53 knockout mice by nUPLC-ESI-MS/MS

Se Mi Park, Seul Kee Byeon, Hojun Lee, Hyerim Sung, Il Yong Kim, Je Kyung Seong, Myeong Hee Moon

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


Tumour suppressor p53 is known to be associated with the maintenance of mitochondrial functional properties in the skeletal muscles. As deactivation or mutation of p53 can affect the synthesis of lipids, investigating the relationship between p53-related energy generation metabolism and perturbation of lipid profile is critical. In this study, 329 lipid species (among 412 identified species) in two different skeletal muscle tissues (the gastrocnemius and soleus) from p53 knockout (KO) mice were quantitatively analysed using nanoflow ultrahigh performance liquid chromatography tandem mass spectrometry (nUPLC-MS/MS). Overall, lipids from the soleus tissues were more affected by p53 KO than those from the gastrocnemius in most lipid profiles. In p53 KO, lysophosphatidylcholine (LPC), lysophosphatidylserine (LPS), phosphatidic acid (PA), sphingomyelin (SM), and triacylglycerol (TAG), including 6 TAG (44:2, 46:0, 58:5, 58:8, 58:9, and 50:0), were significantly increased (p < 0.05) by 1.4-2-fold only in the soleus tissue. Overall monohexosylceramide (MHC) levels, including those of 3 MHC species (d18:0/24:0, d18:1/22:0, and d18:1/24:0), were significantly increased (p < 0.05) by 2-4 fold, only in the gastrocnemius tissue. The results suggest that lipid profiles are significantly altered by the lack of p53 in muscle tissues.

Original languageEnglish
Article number3302
JournalScientific reports
Issue number1
Publication statusPublished - 2017 Dec 1

Bibliographical note

Publisher Copyright:
© The Author(s) 2017.

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Lipidomic analysis of skeletal muscle tissues of p53 knockout mice by nUPLC-ESI-MS/MS'. Together they form a unique fingerprint.

Cite this