Abstract
Determining cell lineage and function is critical to understanding human physiology and pathology. Although advances in lineage tracing methods provide new insight into cell fate, defining cellular diversity at the mammalian level remains a challenge. Here, we develop a genome editing strategy using a cytidine deaminase fused with nickase Cas9 (nCas9) to specifically target endogenous interspersed repeat regions in mammalian cells. The resulting mutation patterns serve as a genetic barcode, which is induced by targeted mutagenesis with single-guide RNA (sgRNA), leveraging substitution events, and subsequent read out by a single primer pair. By analyzing interspersed mutation signatures, we show the accurate reconstruction of cell lineage using both bulk cell and single-cell data. We envision that our genetic barcode system will enable fine-resolution mapping of organismal development in healthy and diseased mammalian states.
Original language | English |
---|---|
Article number | 1234 |
Journal | Nature communications |
Volume | 10 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2019 Dec 1 |
Bibliographical note
Funding Information:This work was supported by: (i) the Mid-career Researcher Program (NRF-2018R1A2A1A05079172) from the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Planning, (ii) the Bio & Medical Technology Development Program of the NRF, funded by the Korean government (MSIT; NRF-2016M3A9B6948494), and (iii) the Bio & Medical Technology Development Program of the NRF, funded by the Korean government (MSIT; NRF-2018M3A9H3024850).
Publisher Copyright:
© 2019, The Author(s).
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Biochemistry, Genetics and Molecular Biology(all)
- Physics and Astronomy(all)