Abstract
Crystalline Indium–Tin–Zinc-Oxide (c-ITZO) thin films transistors (TFTs) are investigated to confirm the device performance and analyze the device reliability of c-ITZO under positive/negative bias stress with/without illumination. The deposited ITZO thin film is controlled by adjusting the annealing temperature to obtain the crystal structure. We observe the transition from an amorphous to a crystalline structure at a temperature above 700 °C. As a result, the c-ITZO TFTs were confirmed to exhibit a high electron mobility when compared with amorphous ITZO (a-ITZO) TFTs. The considerable enhancement in device reliability for c-ITZO TFTs is particularly measured under negative bias stress and negative bias illumination stress without degradation in the electron mobility, and this is related to the decrease in defects after a phase change from amorphous to crystalline. These results suggest that the c-ITZO TFT can be applied in next-generation displays.
Original language | English |
---|---|
Article number | 146655 |
Journal | Applied Surface Science |
Volume | 526 |
DOIs | |
Publication status | Published - 2020 Oct 1 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) ( NRF-2017R1E1A1A01074087 ).
Publisher Copyright:
© 2020
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Condensed Matter Physics
- Physics and Astronomy(all)
- Surfaces and Interfaces
- Surfaces, Coatings and Films