Abstract
This paper aims to facilitate more practical NLOS imaging by reducing the number of samplings and scan areas. To this end, we introduce a phasor-based enhancement network that is capable of predicting clean and full measurements from noisy partial observations. We leverage a denoising autoencoder scheme to acquire rich and noise-robust representations in the measurement space. Through this pipeline, our enhancement network is trained to accurately reconstruct complete measurements from their corrupted and partial counterparts. However, we observe that the naïve application of denoising often yields degraded and over-smoothed results, caused by unnecessary and spurious frequency signals present in measurements. To address this issue, we introduce a phasor-based pipeline designed to limit the spectrum of our network to the frequency range of interests, where the majority of informative signals are detected. The phasor wavefronts at the aperture, which are band-limited signals, are employed as inputs and outputs of the network, guiding our network to learn from the frequency range of interests and discard unnecessary information. The experimental results in more practical acquisition scenarios demonstrate that we can look around the corners with 16× or 64× fewer samplings and 4× smaller apertures. Our code is available at https://github.com/join16/LEAP.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2024 - 18th European Conference, Proceedings |
Editors | Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 72-89 |
Number of pages | 18 |
ISBN (Print) | 9783031727740 |
DOIs | |
Publication status | Published - 2025 |
Event | 18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy Duration: 2024 Sept 29 → 2024 Oct 4 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 15101 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 18th European Conference on Computer Vision, ECCV 2024 |
---|---|
Country/Territory | Italy |
City | Milan |
Period | 24/9/29 → 24/10/4 |
Bibliographical note
Publisher Copyright:© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
All Science Journal Classification (ASJC) codes
- Theoretical Computer Science
- General Computer Science