Abstract
Convolutional neural network-based approaches for semantic segmentation rely on supervision with pixel-level ground truth, but may not generalize well to unseen image domains. As the labeling process is tedious and labor intensive, developing algorithms that can adapt source ground truth labels to the target domain is of great interest. In this paper, we propose an adversarial learning method for domain adaptation in the context of semantic segmentation. Considering semantic segmentations as structured outputs that contain spatial similarities between the source and target domains, we adopt adversarial learning in the output space. To further enhance the adapted model, we construct a multi-level adversarial network to effectively perform output space domain adaptation at different feature levels. Extensive experiments and ablation study are conducted under various domain adaptation settings, including synthetic-to-real and cross-city scenarios. We show that the proposed method performs favorably against the state-of-the-art methods in terms of accuracy and visual quality.
Original language | English |
---|---|
Title of host publication | Proceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 |
Publisher | IEEE Computer Society |
Pages | 7472-7481 |
Number of pages | 10 |
ISBN (Electronic) | 9781538664209 |
DOIs | |
Publication status | Published - 2018 Dec 14 |
Event | 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States Duration: 2018 Jun 18 → 2018 Jun 22 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
ISSN (Print) | 1063-6919 |
Conference
Conference | 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 |
---|---|
Country/Territory | United States |
City | Salt Lake City |
Period | 18/6/18 → 18/6/22 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition