Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences

Hyunjong Park, Sanghoon Lee, Junghyup Lee, Bumsub Ham

Research output: Chapter in Book/Report/Conference proceedingConference contribution

57 Citations (Scopus)

Abstract

We address the problem of visible-infrared person re-identification (VI-reID), that is, retrieving a set of person images, captured by visible or infrared cameras, in a cross-modal setting. Two main challenges in VI-reID are intra-class variations across person images, and cross-modal discrepancies between visible and infrared images. Assuming that the person images are roughly aligned, previous approaches attempt to learn coarse image- or rigid part-level person representations that are discriminative and generalizable across different modalities. However, the person images, typically cropped by off-the-shelf object detectors, are not necessarily well-aligned, which distract discriminative person representation learning. In this paper, we introduce a novel feature learning framework that addresses these problems in a unified way. To this end, we propose to exploit dense correspondences between cross-modal person images. This allows to address the cross-modal discrepancies in a pixel-level, suppressing modality-related features from person representations more effectively. This also encourages pixel-wise associations between cross-modal local features, further facilitating discriminative feature learning for VI-reID. Extensive experiments and analyses on standard VI-reID benchmarks demonstrate the effectiveness of our approach, which significantly outperforms the state of the art.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages12026-12035
Number of pages10
ISBN (Electronic)9781665428125
DOIs
Publication statusPublished - 2021
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: 2021 Oct 112021 Oct 17

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period21/10/1121/10/17

Bibliographical note

Publisher Copyright:
© 2021 IEEE

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Learning by Aligning: Visible-Infrared Person Re-identification using Cross-Modal Correspondences'. Together they form a unique fingerprint.

Cite this