Learning binary residual representations for domain-specific video streaming

Yi Hsuan Tsai, Ming Yu Liu, Deqing Sun, Ming Hsuan Yang, Jan Kautz

Research output: Chapter in Book/Report/Conference proceedingConference contribution

24 Citations (Scopus)

Abstract

We study domain-specific video streaming. Specifically, we target a streaming setting where the videos to be streamed from a server to a client are all in the same domain and they have to be compressed to a small size for low-latency transmission. Several popular video streaming services, such as the video game streaming services of GeForce Now and Twitch, fall in this category. While conventional video compression standards such as H.264 are commonly used for this task, we hypothesize that one can leverage the property that the videos are all in the same domain to achieve better video quality. Based on this hypothesis, we propose a novel video compression pipeline. Specifically, we first apply H.264 to compress domain-specific videos. We then train a novel binary autoencoder to encode the leftover domain-specific residual information frame-by-frame into binary representations. These binary representations are then compressed and sent to the client together with the H.264 stream. In our experiments, we show that our pipeline yields consistent gains over standard H.264 compression across several benchmark datasets while using the same channel bandwidth.

Original languageEnglish
Title of host publication32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PublisherAAAI press
Pages7363-7370
Number of pages8
ISBN (Electronic)9781577358008
Publication statusPublished - 2018
Event32nd AAAI Conference on Artificial Intelligence, AAAI 2018 - New Orleans, United States
Duration: 2018 Feb 22018 Feb 7

Publication series

Name32nd AAAI Conference on Artificial Intelligence, AAAI 2018

Other

Other32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Country/TerritoryUnited States
CityNew Orleans
Period18/2/218/2/7

Bibliographical note

Publisher Copyright:
Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Learning binary residual representations for domain-specific video streaming'. Together they form a unique fingerprint.

Cite this