Laser welding of nanoparticulate TiO2 and transparent conducting oxide electrodes for highly efficient dye-sensitized solar cell

Jinsoo Kim, Jonghyun Kim, Myeongkyu Lee

Research output: Contribution to journalArticlepeer-review

43 Citations (Scopus)

Abstract

Poor interfacial contact is often encountered in nanoparticulate film-based devices. The dye-sensitized solar cell (DSSC) is a representative case in which a nanoporous TiO2 electrode needs to be prepared on the transparent conducting oxide (TCO)-coated glass substrate. In this study, we demonstrate that the inter-electrode contact resistance accounts for a considerable portion of the total resistance of a DSSC and its efficiency can be greatly enhanced by welding the interface with a laser. TiO2 films formed on the TCO-coated glass substrate were irradiated with a pulsed ultraviolet laser beam at 355 nm; this transmits through the TCO and glass but is strongly absorbed by TiO2. Electron microscopy analysis and impedance measurements showed that a thin continuous TiO2 layer is formed at the interface as a result of the local melting of TiO2 nanoparticles and this layer completely bridges the gap between the two electrodes, improving the current flow with a reduced contact resistance. We were able to improve the efficiency by 35-65% with this process. DSSCs fabricated using a homemade TiO2 paste revealed an efficiency improvement from η = 3.3% to 5.4%, and an increase from 8.2% to 11.2% was achieved with the TiO2 electrodes made from a commercial paste.

Original languageEnglish
Article number345203
JournalNanotechnology
Volume21
Issue number34
DOIs
Publication statusPublished - 2010

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Laser welding of nanoparticulate TiO2 and transparent conducting oxide electrodes for highly efficient dye-sensitized solar cell'. Together they form a unique fingerprint.

Cite this