Abstract
APC (80-90%) and K-Ras (40-50%) mutations frequently occur in human colorectal cancer (CRC) and these mutations cooperatively accelerate tumorigenesis including metastasis. In addition, both β-catenin and Ras levels are highly increased in CRC, especially in metastatic CRC (mCRC). Therefore, targeting both the Wnt/β- catenin and Ras pathways could be an ideal therapeutic approach for treating mCRC patients. In this study, we characterized the roles of KY1022, a small molecule that destabilizes both β-catenin and Ras via targeting the Wnt/β-catenin pathway, in inhibiting the cellular events, including EMT, an initial process of metastasis, and apoptosis. As shown by in vitro and in vivo studies using APCMin/+/K-RasG12DLA2 mice, KY1022 effectively suppressed the development of mCRC at an early stage of tumorigenesis. A small molecular approach degrading both β-catenin and Ras via inhibition of the Wnt/β-catenin signaling would be an ideal strategy for treatment of mCRC.
Original language | English |
---|---|
Pages (from-to) | 81727-81740 |
Number of pages | 14 |
Journal | Oncotarget |
Volume | 7 |
Issue number | 49 |
DOIs | |
Publication status | Published - 2016 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (grants 2016R1A5A1004694, 2015R1A2A1A05001873). Y.-H. Cho, J.-S. Yoon, WJ Shin, and E. J. Ro were supported by a BK21 studentship from the NRF.
All Science Journal Classification (ASJC) codes
- Oncology