KSTAR project: An advanced steady state superconducting tokamak experiment

G. S. Lee, J. Kim, S. M. Hwang, C. S. Chang, H. Y. Chang, M. H. Cho, B. H. Choi, K. Kim, K. W. Cho, S. Cho, K. K. Choh, C. H. Choi, J. H. Choi, J. W. Choi, I. S. Choi, C. J. Do, T. H. Ha, J. H. Han, J. S. Hong, K. H. HongN. I. Hur, I. S. Hwang, K. H. Im, H. G. Jhang, Y. S. Jung, B. C. Kim, D. L. Kim, G. H. Kim, H. S. Kim, J. S. Kim, J. Y. Kim, W. C. Kim, Y. S. Kim, K. H. Kwon, M. C. Kyum, B. J. Lee, D. K. Lee, H. G. Lee, J. M. Lee, S. G. Lee, H. G. Na, Y. K. Oh, J. H. Park, H. C. Ri, Y. S. Ryoo, K. Y. Song, H. L. Yang, J. G. Yang, B. J. Yoo, S. J. Yoo, N. S. Yoon, S. B. Yoon, G. H. You, K. I. You, W. Choe, D. I. Choi, S. G. Jeong, D. Y. Lee, Y. S. Bae, H. S. Kang, G. N. Kim, I. S. Ko, W. Namkung, J. S. Oh, Y. D. Bae, Y. S. Cho, B. G. Hong, G. Hong, C. K. Hwang, S. R. In, M. H. Ju, H. J. Lee, B. H. Oh, B. J. Yoon, S. Baang, H. J. Choi, J. Hwang, M. G. Kim, Y. J. Kim, S. I. Lee, J. Yee, C. S. Yoon, K. H. Chung, S. H. Hong, Y. S. Hwang, S. H. Kim, Y. H. Kim, K. H. Chung, J. Y. Lim, D. W. Ha, S. S. Oh, K. S. Ryu, Q. L. Wang, T. K. Ko, J. Joo, S. Suh, C. H. Choi, J. H. Lee, Y. W. Lee, H. S. Shin, I. H. Song, J. Baek, I. Y. Han, Y. Koh, P. Y. Park, C. Ryu, J. J. Cho, D. M. Hwang, Y. S. Kim, J. A. Schmidt, H. K. Park, G. H. Neilson, W. T. Reiersen, R. T. Simmons, S. Bernabei, F. Dahlgren, L. R. Grisham, S. C. Jardin, C. E. Kessel, J. Manickam, S. S. Medley, N. Pomphrey, J. C. Sinnis, T. G. Brown, R. B. White, K. M. Young, J. Schultz, P. W. Wang, L. Sevier, M. D. Carter, P. M. Ryan, D. W. Swain, D. N. Hill, W. M. Nevins, B. J. Braams

Research output: Contribution to journalArticlepeer-review

174 Citations (Scopus)


The Korea Superconducting Tokamak Advanced Research (KSTAR) project is the major effort of the national fusion programme of the Republic of Korea. Its aim is to develop a steady state capable advanced superconducting tokamak to establish a scientific and technological basis for an attractive fusion reactor. The major parameters of the tokamak are: major radius 1.8 m, minor radius 0.5 m, toroidal field 3.5 T and plasma current 2 MA, with a strongly shaped plasma cross-section and double null divertor. The initial pulse length provided by the poloidal magnet system is 20 s, but the pulse length can be increased to 300 s through non-inductive current drive. The plasma heating and current drive system consists of neutral beams, ion cyclotron waves, lower hybrid waves and electron cyclotron waves for flexible profile control in advanced tokamak operating modes. A comprehensive set of diagnostics is planned for plasma control, performance evaluation and physics understanding. The project has completed its conceptual design and moved to the engineering design and construction phase. The target date for the first plasma is 2002.

Original languageEnglish
Pages (from-to)575-582
Number of pages8
JournalNuclear Fusion
Issue numberSPEC. ISS. 3
Publication statusPublished - 2000

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Condensed Matter Physics


Dive into the research topics of 'KSTAR project: An advanced steady state superconducting tokamak experiment'. Together they form a unique fingerprint.

Cite this