Kinetics and thermodynamics of bromophenol blue adsorption by a mesoporous hybrid gel derived from tetraethoxysilane and bis(trimethoxysilyl)hexane

Laijiang You, Zhijian Wu, Taehoon Kim, Kangtaek Lee

Research output: Contribution to journalArticlepeer-review

98 Citations (Scopus)


A mesoporous hybrid gel is prepared with tetraethoxysilane (TEOS) and bis(trimethoxysilyl)hexane (TSH) as precursors without using any templating agent. Nitrogen sorption, TG-DTA, FTIR, and point of zero charge (PZC) measurement are used to characterize the gel. The gel has a specific surface area of 695 m2 g-1 with a pore size of 3.5 nm, a pore volume of 0.564 cm3 g-1, and a point of zero charge (PZC) of 6.2. The kinetics and thermodynamics of bromophenol blue (BPB) adsorption by the gel in aqueous solution are investigated comprehensively. The effects of initial BPB concentration, pH, ionic strength, and temperature on the adsorption are investigated. Kinetic studies show that the kinetic data are well described by the pseudo-second-order kinetic model. Initial adsorption rate increases with the increase in initial BPB concentration and temperature. Adsorption activation energy is found to be 62.5-67.5 kJ mol-1 depending on the initial BPB concentration. Internal diffusion appears to be the rate-limiting step for the adsorption process. The equilibrium adsorption amount increases with the increase in the initial BPB concentration, solution acidity, and ionic strength, but decreases with the increase in temperature. The thermodynamic analysis indicates that the adsorption is spontaneous and exothermic. The adsorption isotherms can be well described with Freundlich equation indicating the heterogeneity of the hybrid gel surface. Electrostatic and hydrophobic interactions are suggested to be the dominant mechanism for adsorption.

Original languageEnglish
Pages (from-to)526-535
Number of pages10
JournalJournal of Colloid and Interface Science
Issue number2
Publication statusPublished - 2006 Aug 15

Bibliographical note

Funding Information:
This work was financially supported by the KOSEF through the Basic Research Fund (R01-2004-000-10944-0) and the National Core Research Center for Nanomedical Technology (R15-2004-024-00000-0).

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Surfaces, Coatings and Films
  • Colloid and Surface Chemistry


Dive into the research topics of 'Kinetics and thermodynamics of bromophenol blue adsorption by a mesoporous hybrid gel derived from tetraethoxysilane and bis(trimethoxysilyl)hexane'. Together they form a unique fingerprint.

Cite this