Joint Global and Local Hierarchical Priors for Learned Image Compression

Jun Hyuk Kim, Byeongho Heo, Jong Seok Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

19 Citations (Scopus)

Abstract

Recently, learned image compression methods have out-performed traditional hand-crafted ones including BPG. One of the keys to this success is learned entropy models that estimate the probability distribution of the quantized latent representation. Like other vision tasks, most recent learned entropy models are based on convolutional neural networks (CNNs). However, CNNs have a limitation in modeling long-range dependencies due to their nature of local connectivity, which can be a significant bottleneck in image compression where reducing spatial redundancy is a key point. To overcome this issue, we propose a novel entropy model called Information Transformer (Informer) that exploits both global and local information in a content-dependent manner using an attention mechanism. Our experiments show that Informer improves rate-distortion performance over the state-of-the-art methods on the Kodak and Tecnick datasets without the quadratic computational complexity problem. Our source code is available at https://github.com/naver-ai/informer.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages5982-5991
Number of pages10
ISBN (Electronic)9781665469463
DOIs
Publication statusPublished - 2022
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: 2022 Jun 192022 Jun 24

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period22/6/1922/6/24

Bibliographical note

Publisher Copyright:
© 2022 IEEE.

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Joint Global and Local Hierarchical Priors for Learned Image Compression'. Together they form a unique fingerprint.

Cite this