Iron deficiency upregulates Egr1 expression

Seung Min Lee, Sun Bok Lee, Ron Prywes, Christopher D. Vulpe

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


Iron-deficient anemia is a prevalent disease among humans. We searched for genes regulated by iron deficiency and its regulated mechanism. cDNA microarrays were performed using Hepa1c1c7 cells treated with 100 μM desferrioxamine (DFO), an iron chelator. Early growth response 1 (Egr1) was upregulated with at least 20-fold increase within 4 h and lasted for 24 h, which was confirmed by qRT-PCR. This activation was not seen by ferric ammonium citrate (FAC). DFO increased the transcriptional activity of Egr1-luc (−604 to +160) and serum response element (SRE)-luc reporters by 2.7-folds. In addition, cycloheximide lowered DFO-induced Egr1 mRNA levels. The upregulation of Egr1 by DFO was accompanied by sustained ERK signals along with phosphorylation of Elk-1. The ERK inhibitor (PD98059) prevented the DFO-induced Egr1 mRNAs. Overexpression of Elk-1 mutant (pElk-1S383A) decreased Egr1 reporter activity. DFO lowered reactive oxygen species (ROS) production and increased caspase 3/7 activity and cell death. DFO-induced iron deficiency upregulates Egr1 in part through transcriptional activation via ERK and Elk-1 signals, which may be important in the regulation of cell death in hepatoma cells. Our study demonstrated that iron depletion controlled the expression of Egr1, which might contribute to decisions about cellular fate in response to iron deficiency.

Original languageEnglish
Article number3
JournalGenes and Nutrition
Issue number4
Publication statusPublished - 2015 Jul 22

Bibliographical note

Funding Information:
Acknowledgments This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2013-11-2083).

Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.

All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism
  • Genetics


Dive into the research topics of 'Iron deficiency upregulates Egr1 expression'. Together they form a unique fingerprint.

Cite this