Ionoelastomer electrolytes for stretchable ionic thermoelectric supercapacitors

Tae Hyun Park, Byeonggwan Kim, Seunggun Yu, Youjin Park, Jin Woo Oh, Taebin Kim, Nara Kim, Yeonji Kim, Dan Zhao, Zia Ullah Khan, Samuel Lienemann, Xavier Crispin, Klas Tybrandt, Cheolmin Park, Seong Chan Jun

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Ionic thermoelectric supercapacitors (ITESCs) produce orders of magnitude higher voltages than those of conventional thermoelectrics (TEs) based on the thermo-diffusion of electrons/holes and are therefore attractive for converting low-grade heat into electricity. The stretchability and stability of the whole ITESC are important for wearable heat harvesting applications. Recent studies on ITESC have focused on stretchable ionic TE electrolytes with a giant Seebeck coefficient, but there are no reports of fully stretchable ITESCs for wearable heat harvesting devices due to the lack of stretchable electrodes and stretchable ionic TE electrolytes with stability. Herein, we present a fully stretchable ITESC composed of stable high-performance ionic thermoelectric elastomer (ITE) electrolyte and stretchable gold nanowire (AuNW) electrodes. The ITE shows excellent air stability (> 60 d) in comparison to hydrogel-based electrolytes that are susceptible to dehydration in ambient conditions. Furthermore, the ITE exhibits an apparent thermopower up to 38.9 mV K–1 and ionic conductivity of 3.76 × 10–1 mS cm–1, which both are maintained up to a tensile strain of 250%. Finally, a fully stretchable ITESC with AuNW electrodes is developed which can harvest energy from thermal gradients during deformations.

Original languageEnglish
Article number108643
JournalNano Energy
Volume114
DOIs
Publication statusPublished - 2023 Sept

Bibliographical note

Publisher Copyright:
© 2023 Elsevier Ltd

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • General Materials Science
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Ionoelastomer electrolytes for stretchable ionic thermoelectric supercapacitors'. Together they form a unique fingerprint.

Cite this