Interfacial coupled engineering of plasmonic amorphous MoO3-x nanodots/g-C3N4 nanosheets for photocatalytic water splitting and photothermal conversion

Yumei Ren, Desheng Feng, Zhiming Yan, Zixu Sun, Zixuan Zhang, Dongwei Xu, Chong Qiao, Zhonghui Chen, Yu Jia, Seong Chan Jun, Shude Liu, Yusuke Yamauchi

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)

Abstract

Semiconductor-based plasmonic materials have attracted extensive attention for photocatalytic systems. However, their photocatalytic reactions are hindered by limited light-harvesting ability and the transfer rate of photo-generated electrons. Herein, vacancy engineering and phase engineering are rationally integrated to develop amorphous molybdenum oxide (a-MoO3−x) nanodots anchored on g-C3N4 as a highly active photocatalyst. Through high localized surface plasmon resonance (LSPR) effect of a-MoO3−x nanodots and tunable electrical properties induced by the heterostructural interface, the Z-scheme a-MoO3−x/g-C3N4 heterostructure demonstrates broadband absorption and the excited photo-generated electrons. Further theoretical calculations demonstrate that the enhancement of photocatalytic and photothermal performance is mainly attributed to the highly localized Anderson tail states of a-MoO3−x. Consequently, the a-MoO3−x/g-C3N4 heterostructure exhibits a photocurrent density of ∼36.5 μA cm−2, which is about 2.7 and 4.1 times higher than that of pure g-C3N4 nanosheets (∼13.5 μA cm−2) and a-MoO3−x nanodots (∼9 μA cm−2), respectively. The photocatalytic performance enhancement relying on defects and long-range disorder of a-MoO3−x in Z-scheme heterostructure is explored.

Original languageEnglish
Article number139875
JournalChemical Engineering Journal
Volume453
DOIs
Publication statusPublished - 2023 Feb 1

Bibliographical note

Publisher Copyright:
© 2022 Elsevier B.V.

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Environmental Chemistry
  • General Chemical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Interfacial coupled engineering of plasmonic amorphous MoO3-x nanodots/g-C3N4 nanosheets for photocatalytic water splitting and photothermal conversion'. Together they form a unique fingerprint.

Cite this