Interfacial Assembled CeO2- x/Co@N-Doped Carbon Hollow Nanohybrids for High-Performance Lithium-Sulfur Batteries

Wentao Qi, Wencai Yi, Wen Jiang, Rui Ling, Chao Yang, Shude Liu, Seong Chan Jun, Yusuke Yamauchi, Bingqiang Cao

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

Despite their high theoretical specific energy, lithium-sulfur (Li-S) batteries still suffer from a significant shuttling effect and sluggish redox conversion of lithium polysulfides (LiPSs), which seriously hinders their practical application. Here, we develop a heterostructure comprising hollow oxygen-deficient CeO2 (H-CeO2-x)/Co nanocrystals@N-doped carbon (NC) nanospheres as a multifunctional sulfur host for Li-S batteries. The resulting H-CeO2-x/Co@NC effectively prevents the shuttling effect and accelerates trapping-diffusion-conversion of LiPSs through the interconnection of conductive networks and exposure of adsorptive/catalytic planes with different components. Theoretical calculations reveal that the introduction of oxygen vacancies and the formation of heterogeneous interfaces strengthen the combination of H-CeO2-x/Co@NC with LiPSs and accelerate the decomposition of Li2S. The introduction of Co induces an electric field in CeO2, which generates highly active interfaces to improve the adsorption ability and redox conversion for LiPSs. Consequently, the H-CeO2-x/Co@NC-sulfur cathode exhibits an outstanding rate performance (626 mAh g-1 at 5 C), superior cycling stability with a capacity retention of 81.6% after 1000 cycles at 2 C, and a high areal capacity of 5.3 mAh cm-2 at 0.1 C with a high sulfur loading (5.4 mg cm-2). This work provides insights for the rational design of heterostructures for high-performance Li-S batteries through interface control and defect chemistry.

Original languageEnglish
Pages (from-to)14451-14460
Number of pages10
JournalACS Sustainable Chemistry and Engineering
Volume9
Issue number43
DOIs
Publication statusPublished - 2021 Nov 1

Bibliographical note

Publisher Copyright:
© 2021 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Environmental Chemistry
  • General Chemical Engineering
  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'Interfacial Assembled CeO2- x/Co@N-Doped Carbon Hollow Nanohybrids for High-Performance Lithium-Sulfur Batteries'. Together they form a unique fingerprint.

Cite this