Inter-subject Contrastive Learning for Subject Adaptive EEG-based Visual Recognition

Pilhyeon Lee, Sunhee Hwang, Jewook Lee, Minjung Shin, Seogkyu Jeon, Hyeran Byun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)

Abstract

This paper tackles the problem of subject adaptive EEG-based visual recognition. Its goal is to accurately predict the categories of visual stimuli based on EEG signals with only a handful of samples for the target subject during training. The key challenge is how to appropriately transfer the knowledge obtained from abundant data of source subjects to the subject of interest. To this end, we introduce a novel method that allows for learning subject-independent representation by increasing the similarity of features sharing the same class but coming from different subjects. With the dedicated sampling principle, our model effectively captures the common knowledge shared across different subjects, thereby achieving promising performance for the target subject even under harsh problem settings with limited data. Specifically, on the EEG-ImageNet40 benchmark, our model records the top-1 / top-3 test accuracy of 72.6% / 91.6% when using only five EEG samples per class for the target subject. Our code is available at https://github.com/DeepBCI/Deep-BCI.

Original languageEnglish
Title of host publication10th International Winter Conference on Brain-Computer Interface, BCI 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665413374
DOIs
Publication statusPublished - 2022
Event10th International Winter Conference on Brain-Computer Interface, BCI 2022 - Gangwon-do, Korea, Republic of
Duration: 2022 Feb 212022 Feb 23

Publication series

NameInternational Winter Conference on Brain-Computer Interface, BCI
Volume2022-February
ISSN (Print)2572-7672

Conference

Conference10th International Winter Conference on Brain-Computer Interface, BCI 2022
Country/TerritoryKorea, Republic of
CityGangwon-do
Period22/2/2122/2/23

Bibliographical note

Publisher Copyright:
© 2022 IEEE.

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Human-Computer Interaction
  • Signal Processing

Fingerprint

Dive into the research topics of 'Inter-subject Contrastive Learning for Subject Adaptive EEG-based Visual Recognition'. Together they form a unique fingerprint.

Cite this