Intensity-vesselness Gaussian mixture model (IVGMM) for 2D + t segmentation of coronary arteries for X-ray angiography image sequences

Hyunna Lee, Hackjoon Shim, Hyuk Jae Chang

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

OBJECTIVE: This study aimed to propose an intensity-vesselness Gaussian mixture model (IVGMM) tracking for 2D + t segmentation of coronary arteries for X-ray angiography (XA) image sequences. METHODS: We compose a two dimensional (2D) feature vector of intensity and vesselness to characterize the Gaussian mixture models. In our IVGMM tracking, vessel segmentation is performed for each image frame based on these vessel and background IVGMMs and then the segmentation results of the current image frame is used to update these IVGMMs. The 2D + t segmentation of coronary arteries over the 2D XA image sequence is solved by means of iterating two processes, i.e., segmentation of coronary arteries and update of the IVGMMs. RESULTS: The performance of the proposed IVGMM tracking was evaluated using clinical 2D XA datasets.We evaluated the segmentation accuracy of the IVGMM tracking by comparing with two previous 2D vessel segmentation methods and seven background subtraction (BGS) methods. Of the ten segmentation methods, IVGMM tracking shows the highest similarity to the manual segmentation in terms of precision, recall, Jaccard index (JI), F1 score, and peak signal-to-noise ratio (PSNR). CONCLUSIONS: It is concluded that the IVGMM tracking could obtain reasonable segmentation accuracy outperforming conventional vessel enhancement methods and object tracking methods.

Original languageEnglish
Pages (from-to)579-592
Number of pages14
JournalJournal of X-Ray Science and Technology
Volume23
Issue number5
DOIs
Publication statusPublished - 2015 Sept 21

All Science Journal Classification (ASJC) codes

  • Radiation
  • Instrumentation
  • Radiology Nuclear Medicine and imaging
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Intensity-vesselness Gaussian mixture model (IVGMM) for 2D + t segmentation of coronary arteries for X-ray angiography image sequences'. Together they form a unique fingerprint.

Cite this