Abstract
Understanding of the fundamental mechanisms causing significant enhancement of Li-ionic conductivity by Al3+ doping to a solid LiGe2(PO4)3 (LGP) electrolyte is pursued using first principles density functional theory (DFT) calculations combined with experimental measurements. Our results indicate that partial substitution Al3+ for Ge4+ in LiGe2(PO4)3 (LGP) with aliovalent (Li1+xAlxGe2-x(PO4)3, LAGP) improves the Li-ionic conductivity about four-orders of the magnitude. To unveil the atomic origin we calculate plausible diffusion paths of Li in LGP and LAGP materials using DFT calculations and a nudged elastic band method, and discover that LAGP had additional transport paths for Li with activation barriers as low as only 34% of the LGP. Notably, these new atomic channels manifest subtle electrostatic environments facilitating cooperative motions of at least two Li atoms. Ab-initio molecular dynamics predict Li-ionic conductivity for the LAGP system, which is amazingly agreed experimental measurement on in-house made samples. Consequently, we suggest that the excess amounts of Li caused by the aliovalent Al3+ doping to LGP lead to not only enhancing Li concentration but also opening new conducting paths with substantially decreases activation energies and thus high ionic conductivity of LAGP solid-state electrolyte.
Original language | English |
---|---|
Pages (from-to) | 11-16 |
Number of pages | 6 |
Journal | Journal of Power Sources |
Volume | 293 |
DOIs | |
Publication status | Published - 2015 Oct 20 |
Bibliographical note
Funding Information:This work was supported by the Korea Electrotechnology Research Institute (KERI) top-down research program of MSIP/ISTK (No. 15-12-N0101-57). This research was also supported by Global Frontier Program through the Global Frontier Hybrid Interface Materials (GFHIM) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning ( 2013M3A6B1078882 ).
Publisher Copyright:
© 2015 Published by Elsevier B.V.
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Physical and Theoretical Chemistry
- Electrical and Electronic Engineering