Integrated Infrared Signature Management with Multispectral Selective Absorber via Single-Port Grating Resonance

Changhoon Park, Jagyeong Kim, Jae W. Hahn

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Engineering reflective or thermal signatures is essential in stealth technology for enhancing survivability. For military weapons, infrared (IR) image fusion with reflective and thermal signatures or a laser guidance system has been adopted for detecting enemies. However, the control of reflective and thermal signatures over the entire mid-IR (MIR) range requires a complex structure. Herein, integrated IR signature (IIRS) management with a multispectral selective absorber (MSA) against IR fusion cameras and a guidance laser is presented. For multispectral engineering with a periodic metal–insulator–metal structure, the physical concept of single-port grating resonance (SPGR) is proposed. SPGR exhibits an absorption range 6.4 times broader than that of localized surface plasmon resonance. Covering the entire MIR spectrum, the MSA designed with SPGR reduces the reflective signature by 92.2% at 1.06 µm (wavelength of guidance laser), and 64.6% by short-wave IR (SWIR) camera, and it reduces the thermal signature by 98.0%. The IIRS management with the MSA reduces the lock-on range by 70% and 26% for the mid-wave IR and SWIR cameras, respectively, and provides perfect camouflage performance against the laser guidance, in contrast to stainless steel. The IIRS management with the MSA based on SPGR can be applied to multispectral camouflage.

Original languageEnglish
Article number2002225
JournalAdvanced Optical Materials
Volume9
Issue number13
DOIs
Publication statusPublished - 2021 Jul 5

Bibliographical note

Funding Information:
This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT for the First‐Mover Program for Accelerating Disruptive Technology Development (NRF‐2019M3F6A1109469: 1711099704).

Publisher Copyright:
© 2021 Wiley-VCH GmbH

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Integrated Infrared Signature Management with Multispectral Selective Absorber via Single-Port Grating Resonance'. Together they form a unique fingerprint.

Cite this