Insight into the mechanism of the thermal reduction of graphite oxide: Deuterium-labeled graphite oxide is the key

Zdeněk Sofer, Ondřej Jankovský, Petr Šimek, David Sedmidubský, Jiří Šturala, Jiří Kosina, Romana Mikšová, Anna Macková, Martin Mikulics, Martin Pumera

Research output: Contribution to journalArticlepeer-review

43 Citations (Scopus)

Abstract

For the past decade, researchers have been trying to understand the mechanism of the thermal reduction of graphite oxide. Because deuterium is widely used as a marker in various organic reactions, we wondered if deuterium-labeled graphite oxide could be the key to fully understand this mechanism. Graphite oxides were prepared by the Hofmann, Hummers, Staudenmaier, and Brodie methods, and a deuterium-labeled analogue was synthesized by the Hofmann method. All graphite oxides were analyzed not only using the traditional techniques but also by gas chromatography-mass spectrometry (GC-MS) during exfoliation in hydrogen and nitrogen atmospheres. GC-MS enabled us to compare differences between the chemical compositions of the organic exfoliation products formed during the thermal reduction of these graphite oxides. Nuclear analytical methods (Rutherford backscattering spectroscopy, elastic recoil detection analysis) were used to calculate the concentrations of light elements, including the ratio of hydrogen to deuterium. Combining all of these results we were able to determine graphite oxides thermal reduction mechanism. Carbon dioxide, carbon monoxide, and water are formed from the thermal reduction of graphite oxide. This process is also accompanied by various radical reactions that lead to the formation of a large amount of carcinogenic volatile organic compounds, and this will have major safety implications for the mass production of graphene.

Original languageEnglish
Pages (from-to)5478-5485
Number of pages8
JournalACS Nano
Volume9
Issue number5
DOIs
Publication statusPublished - 2015 May 26

Bibliographical note

Publisher Copyright:
© 2015 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Insight into the mechanism of the thermal reduction of graphite oxide: Deuterium-labeled graphite oxide is the key'. Together they form a unique fingerprint.

Cite this