Influences of A- and B-site cations on the physicochemical properties of perovskite-structured A(In1/3Nb1/3B1/3)O3 (A = Sr, Ba; B = Sn, Pb) photocatalysts

Su Gil Hur, Tae Woo Kim, Seong Ju Hwang, Jin Ho Choy

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

We have investigated the effects of A- and B-site cation substitution on the physicochemical properties of perovskite-structured A(In1/3Nb1/3B1/3)O3 (A = Sr, Ba; B = Sn, Pb) photocatalysts. X-ray diffraction, X-ray absorption and diffuse UV-vis spectroscopic analyses reveal that tetravalent PbIV or SnIV ions can be successfully incorporated into the octahedral B-site of the perovskite lattice, leading to a narrowing of bandgap energy (Eg). The substitution of such electronegative cations gives rise to the enhancement of photocatalytic activity to effectively decompose organic molecules. Interestingly, alkaline earth metal ions in the dodecahedral A-site with ionic bonding environment also affect significantly the band structure and photoefficiency of the perovskite compounds; a larger cation is beneficial for creating visible light driven photocatalytic activity through a decrease of Eg. This observation could be understood in terms of the weakening of transition metal-oxygen bond upon the expansion of unit cell. The present relationship between the chemical bonding nature of substituent cation and the band structure provides an efficient tool for designing and developing new efficient visible light active photocatalysts.

Original languageEnglish
Pages (from-to)176-181
Number of pages6
JournalJournal of Photochemistry and Photobiology A: Chemistry
Volume183
Issue number1-2
DOIs
Publication statusPublished - 2006 Sept 30

Bibliographical note

Funding Information:
This work was supported by grant no. R08-2003-000-10409-0 from the Basic Research Program of the Korea Science & Engineering Foundation and partly by the SRC/ERC program of MOST/KOSEF (grant: R11-2005-008-03002-0). The experiments at Pohang Light Source (PLS) were supported in part by MOST and POSTECH.

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Influences of A- and B-site cations on the physicochemical properties of perovskite-structured A(In1/3Nb1/3B1/3)O3 (A = Sr, Ba; B = Sn, Pb) photocatalysts'. Together they form a unique fingerprint.

Cite this