Abstract
CaO- (0-20 mass%) and SiO 2-containing (0-30 mass%) wüstite ('FeO') compacts were isothermally reduced at 1 273 K under CO and H 2 gas. Prior to reduction, the phase of dicalcium ferrite (Ca 2Fe 2O 5) and fayalite (Fe 2SiO 4) was equilibrated with 'FeO' at 1 273 K under 50%CO/50%CO 2 and identified using X-ray diffraction and scanning electron microscopy. The rate of reduction for CaO-containing 'FeO' compacts under both H 2 and CO increased up to the vicinity of 2.5 mass% CaO, and then decreased with higher CaO dependent on the formation of an intermediate phase of dicalcium ferrite. For SiO 2-containing 'FeO', the rate decreased with SiO 2 additions. When the dense fayalite is present reduction using CO was limited, while considerable reduction was observed using H 2. The reduction was affected by three distinct reduction mechanisms of interfacial chemical reaction, gaseous mass transport, solid state diffusion of oxygen or a combination of these individual mechanisms termed the mixed control. The contribution of each mechanism with the content of CaO or SiO 2 affecting the reduction behavior was determined. The compact porosity increased when CaO was added to approximately 2.5 mass% and subsequently decreased with higher CaO, but continuously decreased with SiO 2 additions. The ratio of the effective diffusivity (De) to molecular interdiffusivity (D) was highest at the vicinity of 2.5 mass% CaO and thus the maximum reduction rate was obtained when the porosity was highest.
Original language | English |
---|---|
Pages (from-to) | 1463-1471 |
Number of pages | 9 |
Journal | ISIJ International |
Volume | 52 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2012 |
All Science Journal Classification (ASJC) codes
- Mechanics of Materials
- Mechanical Engineering
- Metals and Alloys
- Materials Chemistry