Individualness and determinantal point processes for pedestrian detection

Donghoon Lee, Geonho Cha, Ming Hsuan Yang, Songhwai Oh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

23 Citations (Scopus)


In this paper, we introduce individualness of detection candidates as a complement to objectness for pedestrian detection. The individualness assigns a single detection for each object out of raw detection candidates given by either object proposals or sliding windows. We show that conventional approaches, such as non-maximum suppression, are sub-optimal since they suppress nearby detections using only detection scores. We use a determinantal point process combined with the individualness to optimally select final detections. It models each detection using its quality and similarity to other detections based on the individualness. Then, detections with high detection scores and low correlations are selected by measuring their probability using a determinant of a matrix, which is composed of quality terms on the diagonal entries and similarities on the off-diagonal entries. For concreteness, we focus on the pedestrian detection problem as it is one of the most challenging problems due to frequent occlusions and unpredictable human motions. Experimental results demonstrate that the proposed algorithm works favorably against existing methods, including non-maximal suppression and a quadratic unconstrained binary optimization based method.

Original languageEnglish
Title of host publicationComputer Vision - 14th European Conference, ECCV 2016, Proceedings
EditorsBastian Leibe, Jiri Matas, Nicu Sebe, Max Welling
PublisherSpringer Verlag
Number of pages17
ISBN (Print)9783319464657
Publication statusPublished - 2016
Event14th European Conference on Computer Vision, ECCV 2016 - Amsterdam, Netherlands
Duration: 2016 Oct 82016 Oct 16

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9910 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference14th European Conference on Computer Vision, ECCV 2016

Bibliographical note

Publisher Copyright:
© Springer International Publishing AG 2016.

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Computer Science(all)


Dive into the research topics of 'Individualness and determinantal point processes for pedestrian detection'. Together they form a unique fingerprint.

Cite this