Abstract
Material loss and plastic deformation induced by frictional interactions at moving mechanical interfaces continue to be major issues responsible for efficiency and performance degradation of systems. Establishment of fully elastic interactions in the contact region without compromising the structural rigidity and integrity of materials represents a promising solution. In this study, we report on improving the elasticity, damping properties, ductility and wear resistance of diamond-like carbon (DLC) coatings through introducing an immobilized C 60 cluster layer. The C 60 clusters were immobilized using cysteamine (HS(CH 2 ) 2 NH 2 ) self-assembled monolayers (SAMs) attached to a pre-sputtered Au layer. A Ni adhesive layer was deposited onto plasma cleaned Si (100) substrates prior to Au, SAM-C 60 , and DLC deposition. Precise dynamic ultra nano-indentation tests indicated a drastic improvement in elasticity and damping capacity of the C 60 -DLC hybrid (Ni-Au-SAM/C 60 -DLC) multilayer coating compared to those of the C 60 -free (Ni-Au-DLC) multilayer. The behavior of the coatings under reciprocating contact conditions was evaluated. Quantification of the resistance of the coatings against wear and permanent deformation revealed a significant improvement in the wear rate from ∼3.38 × 10 -8 to ∼5.14 × 10 -10 mm 3 N -1 mm -1 upon incorporation of the immobilized C 60 clusters. The corresponding mechanisms were assessed through experiments and finite element (FE) simulations.
Original language | English |
---|---|
Pages (from-to) | 2863-2870 |
Number of pages | 8 |
Journal | Nanoscale |
Volume | 11 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2019 Feb 14 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2010-0018289).
Publisher Copyright:
© 2019 The Royal Society of Chemistry.
All Science Journal Classification (ASJC) codes
- Materials Science(all)