Abstract
To enhance the electrochemical performance and syngas production in low-temperature co-electrolysis (LT-Co-EC), incorporation of Pd into the nickel-yttria-stabilized zirconia (Ni-YSZ) fuel electrode functional layer (FEFL) of a thin film-based solid oxide cell (TF-SOC) by multi-layer thin film deposition was investigated. The optimal configuration to insert a Pd layer without disturbing the surface and cross-sectional microstructure of the FEFL was fabricated by alternating multi-layer deposition of Pd by sputtering and nickel oxide-yttria-stabilized zirconia (NiO-YSZ) by pulsed laser deposition (PLD). TF-SOCs with Pd (Pd-cell) and without Pd (Ref-cell) were fabricated and compared based on the electrochemical reaction and syngas production in LT-Co-EC. The results showed that the catalytic activity by forming the Pd-Ni alloy on the electrochemical performance and thermochemical reaction are improved by Pd incorporation at low temperatures (≤600 °C). Detailed microstructural analyses showed that Pd distributes from the electrode/electrolyte interface to a depth of several tens of microns in the anode support and forms a nano-structured Ni-Pd alloy, which contributes to improving the electrochemical reaction and thermochemical reactions such as water-gas-shift (WGS). It was also found that the performance stability was superior in the Pd-cell because pore array generation at the electrolyte/electrode interface was significantly suppressed in comparison with that of the Ref-cell.
Original language | English |
---|---|
Pages (from-to) | 7433-7444 |
Number of pages | 12 |
Journal | Journal of Materials Chemistry A |
Volume | 5 |
Issue number | 16 |
DOIs | |
Publication status | Published - 2017 |
Bibliographical note
Funding Information:The authors are grateful to the Global Frontier R & D Program on Center for Multiscale Energy Systems (Grant No. NRF-2015M3A6A7065442) of the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT & Future Planning (MSIP), and to the Institutional Program of Korea Institute of Science and Technology (KIST) for financial support.
Publisher Copyright:
© The Royal Society of Chemistry.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Renewable Energy, Sustainability and the Environment
- Materials Science(all)