Abstract
As GPUs have become essential components for embedded computing systems, a shared GPU with multiple CPU cores needs to efficiently support concurrent execution of multiple different applications. Spatial multitasking, which assigns a different amount of streaming multiprocessors (SMs) to multiple applications, is one of the most common solutions for this. However, this is not a panacea for maximizing total resource utilization. It is because an SM consists of many different sub-resources such as caches, execution units and scheduling units, and the requirements of the sub-resources per kernel are not well matched to their fixed sizes inside an SM. To solve the resource requirement mismatch problem, this paper proposes a GPU Weaver, a dynamic sub-resource management system of multitasking GPUs. GPU Weaver can maximize sub-resource utilization through a shared resource controller (SRC) that is added between neighboring SMs. The SRC dynamically identifies idle sub-resources of an SM and allows them to be used by the neighboring SM when possible. Experiments show that the combination of multiple sub-resource borrowing techniques enhances the total throughput by up to 26 and 9.5 percent on average over the baseline spatial multitasking GPU.
Original language | English |
---|---|
Article number | 8585119 |
Pages (from-to) | 1-5 |
Number of pages | 5 |
Journal | IEEE Computer Architecture Letters |
Volume | 18 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2019 Jan 1 |
Bibliographical note
Funding Information:This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NO.NRF-2015R1C1A1A01053844, NO.NRF-2016R1C1B2016072), ICT R&D program of MSIP/IITP (No.2017-0-00142), and the R&D program of MOTIE/KEIT (No.10077609).
Publisher Copyright:
© 2002-2011 IEEE.
All Science Journal Classification (ASJC) codes
- Hardware and Architecture