Improving GPU multitasking efficiency using dynamic resource sharing

Jiho Kim, Jehee Cha, Jason Jong Kyu Park, Dongsuk Jeon, Yongjun Park

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

As GPUs have become essential components for embedded computing systems, a shared GPU with multiple CPU cores needs to efficiently support concurrent execution of multiple different applications. Spatial multitasking, which assigns a different amount of streaming multiprocessors (SMs) to multiple applications, is one of the most common solutions for this. However, this is not a panacea for maximizing total resource utilization. It is because an SM consists of many different sub-resources such as caches, execution units and scheduling units, and the requirements of the sub-resources per kernel are not well matched to their fixed sizes inside an SM. To solve the resource requirement mismatch problem, this paper proposes a GPU Weaver, a dynamic sub-resource management system of multitasking GPUs. GPU Weaver can maximize sub-resource utilization through a shared resource controller (SRC) that is added between neighboring SMs. The SRC dynamically identifies idle sub-resources of an SM and allows them to be used by the neighboring SM when possible. Experiments show that the combination of multiple sub-resource borrowing techniques enhances the total throughput by up to 26 and 9.5 percent on average over the baseline spatial multitasking GPU.

Original languageEnglish
Article number8585119
Pages (from-to)1-5
Number of pages5
JournalIEEE Computer Architecture Letters
Volume18
Issue number1
DOIs
Publication statusPublished - 2019 Jan 1

Bibliographical note

Funding Information:
This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NO.NRF-2015R1C1A1A01053844, NO.NRF-2016R1C1B2016072), ICT R&D program of MSIP/IITP (No.2017-0-00142), and the R&D program of MOTIE/KEIT (No.10077609).

Publisher Copyright:
© 2002-2011 IEEE.

All Science Journal Classification (ASJC) codes

  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'Improving GPU multitasking efficiency using dynamic resource sharing'. Together they form a unique fingerprint.

Cite this