Improvement of Electrical Characteristics and Stability of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using Nitrocellulose Passivation Layer

Kwan Yup Shin, Young Jun Tak, Won Gi Kim, Seonghwan Hong, Hyun Jae Kim

Research output: Contribution to journalArticlepeer-review

42 Citations (Scopus)

Abstract

In this research, nitrocellulose is proposed as a new material for the passivation layers of amorphous indium gallium zinc oxide thin film transistors (a-IGZO TFTs). The a-IGZO TFTs with nitrocellulose passivation layers (NC-PVLs) demonstrate improved electrical characteristics and stability. The a-IGZO TFTs with NC-PVLs exhibit improvements in field-effect mobility (μFE) from 11.72 ± 1.14 to 20.68 ± 1.94 cm2/(V s), threshold voltage (Vth) from 1.85 ± 1.19 to 0.56 ± 0.35 V, and on/off current ratio (Ion/off) from (5.31 ± 2.19) × 107 to (4.79 ± 1.54) × 108 compared to a-IGZO TFTs without PVLs, respectively. The Vth shifts of a-IGZO TFTs without PVLs, with poly(methyl methacrylate) (PMMA) PVLs, and with NC-PVLs under positive bias stress (PBS) test for 10,000 s represented 5.08, 3.94, and 2.35 V, respectively. These improvements were induced by nitrogen diffusion from NC-PVLs to a-IGZO TFTs. The lone-pair electrons of diffused nitrogen attract weakly bonded oxygen serving as defect sites in a-IGZO TFTs. Consequently, the electrical characteristics are improved by an increase of carrier concentration in a-IGZO TFTs, and a decrease of defects in the back channel layer. Also, NC-PVLs have an excellent property as a barrier against ambient gases. Therefore, the NC-PVL is a promising passivation layer for next-generation display devices that simultaneously can improve electrical characteristics and stability against ambient gases.

Original languageEnglish
Pages (from-to)13278-13285
Number of pages8
JournalACS Applied Materials and Interfaces
Volume9
Issue number15
DOIs
Publication statusPublished - 2017 Apr 19

Bibliographical note

Publisher Copyright:
© 2017 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Improvement of Electrical Characteristics and Stability of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using Nitrocellulose Passivation Layer'. Together they form a unique fingerprint.

Cite this