TY - JOUR
T1 - Improvement in the thermoelectric performance of the crystals of halogen-substituted In 4Se 3-xH 0.03 (H = F, Cl, Br, I)
T2 - Effect of halogen-substitution on the thermoelectric properties in In 4Se 3-x
AU - Ahn, Kyunghan
AU - Cho, Eunseog
AU - Rhyee, Jong Soo
AU - Kim, Sang Il
AU - Hwang, Sungwoo
AU - Kim, Hyun Sik
AU - Lee, Sang Mock
AU - Lee, Kyu Hyoung
PY - 2012/3/28
Y1 - 2012/3/28
N2 - We explored the thermoelectric properties of the crystals of halogen-substituted In 4Se 3-xH 0.03 in an effort to understand the significant effects of halogen-substitution on both electrical and thermal transport properties of In 4Se 3-x crystals as well as the origin of the high thermoelectric performance over a wide temperature range in the chlorine-substitued crystal. The X-ray diffraction patterns and typical infrared absorption spectra of the crystals of In 4Se 3-xH 0.03 exhibit preferred oriented ac- or bc-planes of crystals with energy band gaps between 0.62 and 0.63 eV. The chlorine, bromine, and iodine-substituted In 4Se 3-xH 0.03 crystals exhibit significantly higher room temperature electrical conductivities than the unsubstituted and fluorine-substituted crystals. Except for fluorine, the other halogen-substituted in the In 4Se 3-xH 0.03 crystals show electron concentrations as comparable as the unsubstituted crystals. Thus, the substantial increase in electrical conductivity of the halogen-substituted crystals should result from a remarkable increase in Hall mobility. It is quite notable that the room temperature power factors of the halogen-substituted (such as Cl, Br, and I) crystals are significantly higher than that of the unsubstituted and F-substituted crystals, which is mainly due to the substantial increase in room temperature electrical conductivity. Finally, a relatively low lattice thermal conductivity combined with a high power factor results in a high ZT of ∼1.0 at ∼660 K for the crystal of In 4Se 2.32I 0.03.
AB - We explored the thermoelectric properties of the crystals of halogen-substituted In 4Se 3-xH 0.03 in an effort to understand the significant effects of halogen-substitution on both electrical and thermal transport properties of In 4Se 3-x crystals as well as the origin of the high thermoelectric performance over a wide temperature range in the chlorine-substitued crystal. The X-ray diffraction patterns and typical infrared absorption spectra of the crystals of In 4Se 3-xH 0.03 exhibit preferred oriented ac- or bc-planes of crystals with energy band gaps between 0.62 and 0.63 eV. The chlorine, bromine, and iodine-substituted In 4Se 3-xH 0.03 crystals exhibit significantly higher room temperature electrical conductivities than the unsubstituted and fluorine-substituted crystals. Except for fluorine, the other halogen-substituted in the In 4Se 3-xH 0.03 crystals show electron concentrations as comparable as the unsubstituted crystals. Thus, the substantial increase in electrical conductivity of the halogen-substituted crystals should result from a remarkable increase in Hall mobility. It is quite notable that the room temperature power factors of the halogen-substituted (such as Cl, Br, and I) crystals are significantly higher than that of the unsubstituted and F-substituted crystals, which is mainly due to the substantial increase in room temperature electrical conductivity. Finally, a relatively low lattice thermal conductivity combined with a high power factor results in a high ZT of ∼1.0 at ∼660 K for the crystal of In 4Se 2.32I 0.03.
UR - http://www.scopus.com/inward/record.url?scp=84863260711&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863260711&partnerID=8YFLogxK
U2 - 10.1039/c2jm16369a
DO - 10.1039/c2jm16369a
M3 - Article
AN - SCOPUS:84863260711
SN - 0959-9428
VL - 22
SP - 5730
EP - 5736
JO - Journal of Materials Chemistry
JF - Journal of Materials Chemistry
IS - 12
ER -