Improved explanation of human intelligence using cortical features with second order moments and regression

Hyunjin Park, Jin ju Yang, Jongbum Seo, Yu yong Choi, Kun ho Lee, Jong min Lee

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)


Background: Cortical features derived from magnetic resonance imaging (MRI) provide important information to account for human intelligence. Cortical thickness, surface area, sulcal depth, and mean curvature were considered to explain human intelligence. One region of interest (ROI) of a cortical structure consisting of thousands of vertices contained thousands of measurements, and typically, one mean value (first order moment), was used to represent a chosen ROI, which led to a potentially significant loss of information. Methods: We proposed a technological improvement to account for human intelligence in which a second moment (variance) in addition to the mean value was adopted to represent a chosen ROI, so that the loss of information would be less severe. Two computed moments for the chosen ROIs were analyzed with partial least squares regression (PLSR). Cortical features for 78 adults were measured and analyzed in conjunction with the full-scale intelligence quotient (FSIQ). Results: Our results showed that 45% of the variance of the FSIQ could be explained using the combination of four cortical features using two moments per chosen ROI. Our results showed improvement over using a mean value for each ROI, which explained 37% of the variance of FSIQ using the same set of cortical measurements. Discussion: Our results suggest that using additional second order moments is potentially better than using mean values of chosen ROIs for regression analysis to account for human intelligence.

Original languageEnglish
Pages (from-to)139-146
Number of pages8
JournalComputers in Biology and Medicine
Issue number1
Publication statusPublished - 2014 Apr 1

Bibliographical note

Funding Information:
This study was supported in part by a grant of the Korean Health Technology R&D Project, Ministry for Health, Welfare and Family Affairs, Republic of Korea (A092125). This study was also supported in part by the Basic Science Research Program through the National Research Foundation of Korea Grants 2012R1A2A2A01005939 and 2010-0023233.

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Health Informatics


Dive into the research topics of 'Improved explanation of human intelligence using cortical features with second order moments and regression'. Together they form a unique fingerprint.

Cite this