Abstract
Beryllium oxide (BeO) thin films were grown on a p-type Si substrate by plasma enhanced atomic layer deposition (PEALD) using diethylberyllium as a precursor and O2 plasma. The PEALD BeO exhibited self-saturation and linear growth rates. The dielectric properties of PEALD were compared with those of thermal atomic layer deposition (ThALD). X-ray photoelectron spectroscopy was performed to determine the bandgap energy of PEALD BeO (8.0 eV) and ThALD BeO (7.9 eV). Capacitance–voltage curves revealed that PEALD BeO had low hysteresis and frequency dispersion compared to ThALD BeO. In addition, PEALD showed a dielectric constant of 7.15 (at 1 MHz) and low leakage current (7.25×10-9 A/cm2 at −1 MV/cm). These results indicate that the highly activated radicals from oxygen plasma prompt the chemical reaction at the substrate, thus reducing nucleation delay and interface trap density.
Original language | English |
---|---|
Article number | 107661 |
Journal | Solid-State Electronics |
Volume | 163 |
DOIs | |
Publication status | Published - 2020 Jan |
Bibliographical note
Publisher Copyright:© 2019 Elsevier Ltd
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Electrical and Electronic Engineering
- Materials Chemistry