Abstract
A fundamental study of bent pile structures subjected to combined loads in multi-layered soil is conducted using in situ load tests and a load transfer approach. The emphasis is on quantifying an improved design method developed by considering the pile's plastic hinge and the column-pile interaction. An analytical model is developed that takes into account the nonlinear behaviour of materials for different soil-pile conditions. A framework for determining an optimized column-pile diameter ratio on basis of theoretical analysis is proposed through the relation between the column-pile diameter ratio and lateral crack load ratio. Based on the measured results, an optimized limit depth for a minimum steel reinforcement ratio is defined as the relationship between the bending moments and the crack moments of the concrete pile. An optimized limit depth for a minimum steel reinforcement ratio proportionally decreases as pile length increases, and beyond that the limit depth converges at a constant value (≃0.3).
Original language | English |
---|---|
Pages (from-to) | 1239-1258 |
Number of pages | 20 |
Journal | Materials and Structures/Materiaux et Constructions |
Volume | 47 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2014 Jul |
Bibliographical note
Funding Information:Acknowledgments This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2011-0030842). And, this work was also supported, in part, by the Yonsei University Research Fund.
All Science Journal Classification (ASJC) codes
- Civil and Structural Engineering
- Building and Construction
- Materials Science(all)
- Mechanics of Materials