Impact-resistant capacity and failure behavior of unbonded bi-directional PSC panels

Na Hyun Yi, Sang Won Lee, Jong Wook Kim, Jang Ho Jay Kim

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


Prestressed concrete (PSC) constructions are widely used to build civil infrastructures such as nuclear containment vessels, super-span bridges, and mega-height high-rise buildings due to their excellent load and crack-resisting capacities. However, extreme loading scenarios such as blast and impact on prestressed concrete (PSC) members have yet to be sufficiently studied, due to the difficulties associated with analysis of high strain rate conditions in concrete structures. Therefore, to further elucidate the impact-resistant capacity, and protective performance of PSC structures, we detail the results from impact tests carried out on reinforced concrete (RC), PSC without rebars (PS), and PSC with rebar (PSR) panels with dimensions of 1400 × 1000 × 300 mm. Using a facility in Korea, impact tests were performed using a 14 kN impactor with drop heights of 10 m, 5 m, and 4 m for preliminary tests, and 3.5 m for the main tests. From the preliminary tests, the procedure, layout, and measurement system of the main impact tests were established. The impact-resistant capacity was measured using crack patterns and damage rates, while displacement, acceleration, and residual flexural strength were also measured. From these results, it was determined that unbonded, bi-directional PSR specimens show a high-impact energy absorption capacity, well-dispersed crack pattern, and outstanding residual flexural strength capacity. Also, the test results showed that the unbonded, prestressed concrete construction method can be used to protect critical infrastructures and structures against impact loading. These results advance fundamental understanding in this area, and aid in the advancement of similar research such as protective design and numerical structural impact simulation.

Original languageEnglish
Pages (from-to)40-55
Number of pages16
JournalInternational Journal of Impact Engineering
Publication statusPublished - 2014 Oct

Bibliographical note

Funding Information:
This study was carried out with financial assistance from the National Research Foundation of Korea (NRF) grant, funded by the Ministry of Education, Science, and Technology (No. 2011-0014752 ), and the Nuclear Research & Development of the Korean Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean Government Ministry of Knowledge Economy (No. 2010-1620100180 ).

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Automotive Engineering
  • Aerospace Engineering
  • Safety, Risk, Reliability and Quality
  • Ocean Engineering
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Impact-resistant capacity and failure behavior of unbonded bi-directional PSC panels'. Together they form a unique fingerprint.

Cite this