TY - JOUR
T1 - Identification of proteins that regulate radiation-induced apoptosis in murine tumors with wild type p53
AU - Seong, Jinsil
AU - Oh, Hae Jin
AU - Kim, Jiyoung
AU - An, Jeung Hee
AU - Kim, Wonwoo
PY - 2007
Y1 - 2007
N2 - In this study, we investigated the molecular factors determining the induction of apoptosis by radiation. Two murine tumors syngeneic to C3H/HeJ mice were used: an ovarian carcinoma OCa-I, and a hepatocarcinoma HCa-I. Both have wild type p53, but display distinctly different radiosensitivity in terms of specific growth delay (12.7 d in OCa-I and 0.3 d in HCa-I) and tumor cure dose 50% (52.6 Gy in OCa-I and > 80 Gy in HCa-I). Eight-mm tumors on the thighs of mice were irradiated with 25 Gy and tumor samples were collected at regular time intervals after irradiation. The peak levels of apoptosis were 16.1 ± 0.6% in OCa-I and 0.2 ± 0.0% in HCa-I at 4 h after radiation, and this time point was used for subsequent proteomics analysis. Protein spots were identified by peptide mass fingerprinting with a focus on those related to apoptosis. In OCa-I tumors, radiation increased the expression of cytochrome c oxidase and Bcl2/adenovirus E1B-interacting 2 (Nip 2) protein higher than 3-fold. However in HCa-I, these two proteins showed no significant change. The results suggest that radiosensitivity in tumors with wild type p53 is regulated by a complex mechanism. Furthermore, these proteins could be molecular targets for a novel therapeutic strategy involving the regulation of radiosensitivity.
AB - In this study, we investigated the molecular factors determining the induction of apoptosis by radiation. Two murine tumors syngeneic to C3H/HeJ mice were used: an ovarian carcinoma OCa-I, and a hepatocarcinoma HCa-I. Both have wild type p53, but display distinctly different radiosensitivity in terms of specific growth delay (12.7 d in OCa-I and 0.3 d in HCa-I) and tumor cure dose 50% (52.6 Gy in OCa-I and > 80 Gy in HCa-I). Eight-mm tumors on the thighs of mice were irradiated with 25 Gy and tumor samples were collected at regular time intervals after irradiation. The peak levels of apoptosis were 16.1 ± 0.6% in OCa-I and 0.2 ± 0.0% in HCa-I at 4 h after radiation, and this time point was used for subsequent proteomics analysis. Protein spots were identified by peptide mass fingerprinting with a focus on those related to apoptosis. In OCa-I tumors, radiation increased the expression of cytochrome c oxidase and Bcl2/adenovirus E1B-interacting 2 (Nip 2) protein higher than 3-fold. However in HCa-I, these two proteins showed no significant change. The results suggest that radiosensitivity in tumors with wild type p53 is regulated by a complex mechanism. Furthermore, these proteins could be molecular targets for a novel therapeutic strategy involving the regulation of radiosensitivity.
UR - http://www.scopus.com/inward/record.url?scp=34548815387&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34548815387&partnerID=8YFLogxK
U2 - 10.1269/jrr.07015
DO - 10.1269/jrr.07015
M3 - Article
C2 - 17721044
AN - SCOPUS:34548815387
SN - 0449-3060
VL - 48
SP - 435
EP - 441
JO - Journal of Radiation Research
JF - Journal of Radiation Research
IS - 5
ER -