Abstract
Objective: We investigated whether hippocampal perfusion changes are associated with cognitive decline, motor deficits, and the risk of dementia conversion in patients with Parkinson disease (PD). Methods: We recruited patients with newly diagnosed and nonmedicated PD and healthy participants who underwent dual phase 18F-N-(3-fluoropropyl)-2β-carboxymethoxy-3β-(4-iodophenyl) nortropane positron emission tomography scans. Patients were classified into 3 groups according to hippocampal perfusion measured by standard uptake value ratios (SUVRs): (1) PD hippocampal hypoperfusion group (1 standard deviation [SD] below the mean hippocampal SUVR of healthy controls; PD-hippo-hypo), (2) PD hippocampal hyperperfusion group (1 SD above the mean; PD-hippo-hyper), and (3) the remaining patients (PD-hippo-normal). We compared the baseline cognitive performance, severity of motor deficits, hippocampal volume, striatal dopamine transporter (DAT) availability, and risk of dementia conversion among the groups. Results: We included 235 patients (PD-hippo-hypo, n = 21; PD-hippo-normal, n = 157; PD-hippo-hyper, n = 57) and 48 healthy participants. Patients in the PD-hippo-hypo group were older and had smaller hippocampal volumes than those in the other PD groups. The PD-hippo-hypo group showed less severely decreased DAT availability in the putamen than the other groups despite similar severities of motor deficit. The PD-hippo-hypo group had a higher risk of dementia conversion compared to the PD-hippo-normal (hazard ratio = 2.59, p = 0.013) and PD-hippo-hyper (hazard ratio = 3.73, p = 0.006) groups, despite similar cognitive performance at initial assessment between groups. Interpretation: Hippocampal hypoperfusion may indicate a reduced capacity to cope with neurodegenerative processes in terms of the development of motor deficits and cognitive decline in patients with PD. ANN NEUROL 2024;95:388–399.
Original language | English |
---|---|
Pages (from-to) | 388-399 |
Number of pages | 12 |
Journal | Annals of Neurology |
Volume | 95 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2024 Feb |
Bibliographical note
Publisher Copyright:© 2023 American Neurological Association.
All Science Journal Classification (ASJC) codes
- Neurology
- Clinical Neurology