Highly Selective Reduction of Carbon Dioxide to Methane on Novel Mesoporous Rh Catalysts

Hamidreza Arandiyan, Kenya Kani, Yuan Wang, Bo Jiang, Jeonghun Kim, Masahiro Yoshino, Mehran Rezaei, Alan E. Rowan, Hongxing Dai, Yusuke Yamauchi

Research output: Contribution to journalArticlepeer-review

39 Citations (Scopus)


Mesoporous metals with high surface area hold promise for a variety of catalytic applications, especially for the reduction of CO2 to value-added products. This study has used a novel mesoporous rhodium (Rh) nanoparticles, which were recently developed via a simple wet chemical reduction approach (Nat. Commun. 2017, 8, 15581) as catalyst for CO2 methanation. Highly efficient performance and selectivity for methane formation are achieved due to their controllable crystallinity, high porosity, high surface energy, and large number of atomic steps distributions. The mesoporous Rh nanoparticles, possessing the largest surface area (69 m2 g-1), exhibit a substantially higher reaction rate (5.28 × 10-5 molCO2 gRh-1 s-1) than the nonporous Rh nanoparticles (1.28 × 10-5 molCO2 gRh-1 s-1). Our results indicate the extensive use of mesoporous metals in heterogeneous catalysis processes.

Original languageEnglish
Pages (from-to)24963-24968
Number of pages6
JournalACS Applied Materials and Interfaces
Issue number30
Publication statusPublished - 2018 Aug 1

Bibliographical note

Funding Information:
This work was supported by the Australian Research Council (ARC) Future Fellow (grant FT150100479), Discovery Project (grant DP170104853), Research Fellowship (grant no. L0915/U2403) from The University of Sydney, JSPS KAKENHI (grants 17H05393 and 17K19044), Strategic Core Technology Advancement Program from METI-Kanto, Industry-Academia Collaborative Development Project from Saitama Prefecture, and the research fund from the Suzuken Memorial Foundation. The authors sincerely thank New Innovative Technology (NIT) and Yoshino Denka Kogyo Inc. for valuable suggestions and instructions on materials preparation.

Publisher Copyright:
Copyright © 2018 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Materials Science(all)


Dive into the research topics of 'Highly Selective Reduction of Carbon Dioxide to Methane on Novel Mesoporous Rh Catalysts'. Together they form a unique fingerprint.

Cite this