Highly luminescent silica-coated CdS/CdSe/CdS nanoparticles with strong chemical robustness and excellent thermal stability

Nianfang Wang, Sungjun Koh, Byeong Guk Jeong, Dongkyu Lee, Whi Dong Kim, Kyoungwon Park, Min Ki Nam, Kangha Lee, Yewon Kim, Baek Hee Lee, Kangtaek Lee, Wan Ki Bae, Doh C. Lee

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)


We present facile synthesis of bright CdS/CdSe/CdS@SiO2 nanoparticles with 72% of quantum yields (QYs) retaining ca 80% of the original QYs. The main innovative point is the utilization of the highly luminescent CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) as silica coating seeds. The significance of inorganic semiconductor shell passivation and structure design of quantum dots (QDs) for obtaining bright QD@SiO2 is demonstrated by applying silica encapsulation via reverse microemulsion method to three kinds of QDs with different structure: CdSe core and 2 nm CdS shell (CdSe/CdS-thin); CdSe core and 6 nm CdS shell (CdSe/CdS-thick); and CdS core, CdSe intermediate shell and 5 nm CdS outer shell (CdS/CdSe/CdS-SQW). Silica encapsulation inevitably results in lower photoluminescence quantum yield (PL QY) than pristine QDs due to formation of surface defects. However, the retaining ratio of pristine QY is different in the three silica coated samples; for example, CdSe/CdS-thin/SiO2 shows the lowest retaining ratio (36%) while the retaining ratio of pristine PL QY in CdSe/CdS-thick/SiO2 and SQW/SiO2 is over 80% and SQW/SiO2 shows the highest resulting PL QY. Thick outermost CdS shell isolates the excitons from the defects at surface, making PL QY relatively insensitive to silica encapsulation. The bright SiO2-coated SQW sample shows robustness against harsh conditions, such as acid etching and thermal annealing. The high luminescence and long-term stability highlights the potential of using the SQW/SiO2 nanoparticles in bio-labeling or display applications.

Original languageEnglish
Article number185603
Issue number18
Publication statusPublished - 2017 Apr 10

Bibliographical note

Funding Information:
This work was supported by Samsung Display, Co., Ltd, KIST internal funding (2E27283) and the National Research Foundation (NRF) grants funded by the Korean Government (NRF-2016M3A7B4910618 and NRF-2011-0030256).

Publisher Copyright:
© 2017 IOP Publishing Ltd.

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering


Dive into the research topics of 'Highly luminescent silica-coated CdS/CdSe/CdS nanoparticles with strong chemical robustness and excellent thermal stability'. Together they form a unique fingerprint.

Cite this